Tetrahedron Letters,Vo1.27,No.52,pp 6381-6384,1986 oo40-4039/86 \$3.00 + .OO Pergamon Journals Ltd.

PHOTOCHEMICAL TRANSFORMATION OF A DITHIOACETAL S-OXIDE INTO THE CORRESPONDING ALDEHYDE

Katsuyuki Ogura, Shigeyuki Itoh, Kazumasa Takahashi, and Hirotada Iida Department of Synthetic Chemistry, Faculty of Engineering, Chiba University, Yayoicho l-33, Chiba 260, Japan

Summary: Irradiation of an aldehyde dithioacetal S-oxide gives the corresponding aldehyde. *The mechanism of this photochemiea2 transformation is discussed and its app2ication to organic synthesis is a2so described.*

Dithioacetal S-oxides are very useful reagents for making a variety of organic compounds, where the acid-catalyzed conversion of dithioacetal S-oxide functionality to the corresponding carbonyl group is one of the most important steps.¹

During the course of our investigation to develop further utility of the dithioacetal S-oxide functionality in organic synthesis including an asymmetric synthesis, we have found that ultraviolet irradiation makes it possible to produce an aldehyde from the corresponding dithioacetal S-oxide having p-tolyl group on its sulfinyl sulfur under neutral or basic conditions. This finding enables the use of this functionality for preparing of an acid-sensitive aldehyde.

Irradiation of a tridecanal dithioacetal S-oxide (la) with a low-pressure Hg lamp (Pyrex filter) under bubbling with N_2 afforded tridecanal (2). The results are summarized in Table 1, which shows that the photochemical reaction of la to give 2 takes place in hexane, dioxane, dioxane-water, or methanol. Bubbling with $0₂$ significantly decreased the yields of 1a and 2, suggesting that this reaction might involve an radical intermediate. Analogous tendencies were also observed in the photolysis reaction of a di-p-tolyl dithioacetal S-oxide (lb). Since 1 absorbs the light of longer than 290 nm wavelength (Fig. 1), a high-pressure Hg lamp through a Pyrex filter can be employed for the photolysis of 1 as shown in Table 2. Under these conditions, benzophenone accelerates the reaction, whereas an electron-transfer sensitizer, l-(dimeth-

6381

No.	substrate	solvent	bubbling gas	additive (equiv)	irradiation time/min		yield/%b 2
	1a	hexane	N_{2}		30.	\bigcirc	22
2	1a	hexane	N_{2}		10	52	33(68)
3	1a	dioxane	N_2		30	13	56(64)
4	1a	$dioxane-H2O(9:1)$	N_{2}		30	21	58(73)
5	1a	dioxane- $H2O(9:1)$	N_2	NaHCO ₃ (3)	30	17	61(73)
6	1a	$dioxane-H2O(9:1)$	0 ₂		30	θ	2
7	1a	methanol	N_2	NaHCO ₃ (3)	30	10	58(64)
8	1 _b	hexane	N_{2}		60		44(47)
$\mathbf Q$	1 _b	dioxane	N_2		60	12	48(55)
10	1 _b	dioxane- $H_2O(9:1)$	N_2		60	12	62(70)
11	1 _b	dioxane- $H_2O(9:1)$	N_{2}	NAHCO ₃ (3)	60	13	62(71)
12	1 _b	dioxane- $H_2O(9:1)$	0 ₂		60	\overline{O}	43

Table 1. Photolysis of 1 with 254 nm Light^a

a: 1 (about 1 mmol) was irradiated with a low-pressure Hg lamp (10 W) through a Vycor filter under cooling with tap water. b: $() =$ the yield based on the unrecovered 1.

ylamino)naphthalene, was less effective. These facts are in sharp contrast with the photochemical reaction of the corresponding S, S -dioxide to afford 2, where benzophenone does not serve as a sensitizer, but l-(dimethylamino) naphthalene does. ²

In order to provide some insights into the mechanjsm of the reaction, we irradiated the ¹⁸O-labeled derivative (7) of 1b. When 7 (87% content of 18 0)³ **was** irradiated in anhydrous THY with a low-pressure Hg Lamp and the reaction mixture was subjected to the usual workup and column chromatography, 18 () was not detected in the isolated 2. This is probably due to the fast exchange of 16 O of 2 during the workup or the chromatographic separation. Hence, L-Selectride was directly added to the irradiated mixture to reduce the formed 2. The isolated 1-tridecanol exhibited the fragment of $CH_2O^{18}H$ in its mass

a: irradiated with a 100-W high-pressure Hg lamp through a Pyrex filter in dioxane-H₂O $(9:1)$ under bubbling with N₂ for 8 h. b. $DAN = 1-(dimethylamino)$ naphthalene.

Figure 1. UV Spectrum of 1 in Dioxane

spectrum. From the intensity of this fragment, the 18 O content of 1-tridecanol was calculated to be 73%. Thus the origin of the oxygen of 2 was indicated to be the oxygen of the sulfinyl group of 1.

$$
\begin{array}{ccc}\n\text{n-C}_{12}H_{25}CH & h \lor (254 \text{ nm}) & \text{[n-C}_{12}H_{25}CH^{10} & \text{]} & \text{L-Selectriced} \\
\hline\n\text{7} & \text{10} & \text{5} & \text{6} & \text{6} \\
\text{7} & \text{10} & \text{6} & \text{6} & \text{6} \\
\text{8} & \text{9} & \text{9} & \text{9} \\
\end{array}
$$

This finding as well as the effect of bubbling with $0₂$ and the sensitization experiment supports the reaction path depicted in Scheme 1 for the photochemical conversion of 1 to 2: The reaction is initiated from the triplet excited state of 1 to afford two radical species $(4 \text{ and } 5)$. with the O-site of 5 forms a thioacetal (6), which thermally decomposes t0 give 2 along with a disulfide (3) . The recombination of 4

The intermediary existence of the thioacetal 5 may be suggested by the following observation: After a CDCl₃ solution of la was externally irradiated in a NMR tube with a high-pressure Hg lamp under cooling with ice, the NMR spectrum was immediately measured to show a weak signal in the region of formyl proton. Figure 2. 1 H NMR Spectrum of the Irradiated 1a However, after being allowed to stand at 37 °C for 4 min, an intense signal of the formyl f for 4 min. proton of 2 appeared (Figure 2).

(a) Immediately after irradiation at 0° C.

(b) After being allowed to stand at 37 $^{\circ}$ C

Since methylthio group more strongly stabilizes the radical of its α position than phenyl group,⁵ it may be reasonably assumed that the life time of the intermediary radical 4b is shorter than that of 4a. This seems to reflect on the effect of bubbling with $0₂$ which retards the formation of 2 from lb to a larger extent than from la.

The present reaction was not interrupted by NaHCO₃ which enables the present photolysis under basic conditions. This appears well suited for the preparation of an aldehyde having an acid-sensitive group, as exemplified by the synthesis of 5-(2-tetrahydropyranyloxy)pentanal (13) using formaldehyde di-p-tolyl dithioacetal S-oxide (11).

Further we have found that the photolysis of 1 in the presence of $NABH₄$ gave l-tridecanol (14) which might be produced by the reduction of the primarily formed tridecanal. The photolysis in the copresence of N aBH_A is suitably employed when the desired product is the corresponding alcohol: A dithioacetal S-oxide (15) was irradiated in dioxane-water (9:1), but we could not isolate the corresponding aldehyde. This might be attributable to its instability under acidic, neutral, and basic conditions. Hence, 15 was irradiated in the presence of $NABH_4$ (10 mol-equiv) with a low-pressure Hg lamp to directly yield the corresponding alcohol (16) , which is a synthetic precursor of a β blocker drug, (S)-pindolol (17).

Thus, the photolysis of a dithioacetal S-oxide has been shown to provide a method for producing the corresponding aldehyde under neutral or basic conditions. The scope of the present photochemical reaction and its application to an asymmetric synthesis using optically active formaldehyde di-p-tolyl dithioacetal S-oxide is one of our on-going subjects.

Acknowledgment. This study was supported by the Ministry of Education, Science, and Culture (Grant-in-Aid for Special Project No. 61223006).

References and Footnotes

- 1. K. Ogura and G. Tsuchihashi, $\frac{1}{1}$ Tetrahedron Lett., 3151 (1971) and 2681 (1972); J. E. Richman, J. L. Herrmann, and R. H. Schlessinger, <u>ibid.</u>, 326/and 32/5 (1973); J. L.
.. Herrmann, J. E. Richman, and R. H. Schlessinger, ibid., 3271 (1973); J. L. Herrmann, J. E. Kichman, P. J. Wepplo, and R. H. Schlessinger, <u>ibid.</u>, 4707 (1973); J. L. Herrmann, G. Kieczykowski, R. F. Romanet, P. J. Wepplo, and R. H. Schlessinger, ibid., 4711 (1973); J. L. Herrmann, G. R. Kieczykowski, R. F. Romanet, and R. H. Schiessinger, ibid., 4715 (1973); C. Schill and P. R. Jones, Synthesis, 117 (1974); L. Colombo, C. Gennari, and C. Scolastico, J. Chem. Soc., Perkin Trans. 1, 1278 (1981); L. Colombo, C. Gennari, G. Resnati, and C. Scolastico, J. Chem. So
Fujita, T. Inaba, K. Takahashi, and H. Iid Perkin Trans. I, 1284 (1961); K. Ogura, M. H. 11da, <u>Tetrahedron Lett</u>., 24, 503 (1983); K. Ogura, m. ramasnita, m. Suzuki, S. Furukawa, and G.-Tsuchihashi, <u>Bull. Chem. Soc. Jpn.,</u> 57,
1637–61084) 1637 (1984).
- 2. K. Ogura, K. Ohtsuki, K. Takahashi, and H. Iida, an unpublished result. For the photochemical conversion of a dithioacetal S,S-dioxide to the corresponding aldehyde, K. Ogura, K. Ohtsuki, M. Nakamura, K. Takahashi, and H. Iida, <u>Tetrahedron Lett.,</u> 26, 2455 (1985).
T
- 3. This compound was obtained by alkylation of %-labeld formaldehyde di-p-tolyl dithioacetal S-oxide which was prepared by oxidation of with bromine and H_2 \cup formaldeyde di-p-tolyl dithioacetal in dichloromethane.4
- 4. J. Drabowicz, W. Midura, and M. MikoLajczyk, Synthesis, 39 (1979).
- 5. A. Ohno and Y. Ohnishi, Tetrahedron g, 4405 (1969); B. K. Bandlish, A. W. Garner, M. L. Hodges, and J. W. Timberlake, J. Am. Chem. Soc., 97, 5856 (1975).
- 6. () = the yield based on the unrecovered starting material.